An overview of spiny lobster management strategies

Lessons learned from around the world

Sarah Valencia
Shoreline Resource Consultants, LLC
Sept 5, 2012

A Generic Management Framework

Data — Sampling protocol used to monitor the health of the stock

Assessment — The model used to determine the current status of the stock

Control Rule/ Reference Points — An algorithm that specifies how regulations change when certain criteria (reference points) are met

Regulations—Management actions utilized to meet management goals

West Coast Groundfish

PFMC's management framework for west coast groundfish stocks

- data collection
- a stock assessment
- a reference-point based
 harvest control rule to set
 the target catch
- fishery regulations to achieve target catch

West Coast Groundfish: Data Collection

Fishery-dependent data:

- time/ location of fishing activities
- total catch and catch composition
- effort
- biological sampling: age, growth, maturity

Fishery-independent data:

- surveys provide an index of abundance
- mark-recapture

West Coast Groundfish: Stock Assessment

West Coast Groundfish: Reference Point based control rule

2 types of reference points:

- Biomass-based RPs: B0, Bopt, Bcrash. Tells you if stock is currently overfished.
- Fishing mortality-based RPs: Fcurr, Fopt. Tells you if overfishing is currently occuring.

West Coast Groundfish: 40/10 rule

West Coast Groundfish: Controls

3 types of regulations/ controls:

- biological: protect spawning biomass
- effort-based: limit fishing effort
- catch-based: limit total catch

Most fisheries managed using a combination of a) biological and b) catch or effort controls

Worldwide Lobster Distribution

Case Studies

Western Australia (P. cygnus)

New Zealand (J. edwarsii)

South Australia (J. edwarsii)

Caribbean (P. argus)

Baja California, Mexico (P. interruptus)

Maine (Homarus americanus)

- Largest spiny lobster fishery: I I,000 tons
- 95% commercial, 5% recreational
- Limited entry fishery in 1963
- Effort controlled—Global, zonal, and individual trap limits

Data — catch, effort, length frequencies, FI survey, puerulus settlement

Assessment — modeled projections of I) Egg production index, 2) Effort producing MEY

Control Rule/ Reference Points — Ibiological (20% SPR) and I economic (F_{MEY}) RP, no defined control rule

Regulations — Total allowable effort, MSL, no take of breeding females

- 3,000 tons per year
- 10% recreational, 10% customary
- Effort managed fishery until 1990
- Integrated into NZ's ITQ program
- 9 management units

Data — catch, effort, length frequencies, tag-recapture, puerulus settlement

Assessment — length and sex based Bayesian model to estimate biomass

Control Rule/ Reference Points —evaluate ability to reach B_{MSY} in next 3 years

Regulations — TAC set each year. MSL based on tail width, no take of egg-bearing females

Data — catch, effort, length frequencies, tag-recapture, puerulus settlement

Assessment — length and sex based Bayesian model to estimate biomass

Control Rule/ Reference Points —evaluate ability to reach B_{MSY} in next 3 years

Regulations — TAC set each year. MSL based on tail width, no take of egg-bearing females

Data — catch, effort, length frequencies, tag-recapture, puerulus settlement

Assessment — length and sex based Bayesian model to estimate biomass

Control Rule/ Reference Points —evaluate ability to reach B_{MSY} in next 3 years

Regulations — TAC set each year. MSL based on tail width, no take of egg-bearing females

Benefits of adaptive management

Benefits of adaptive management

Area 7 and 8 Performance

Area 4 Performance

Haist et al 2010 Breen et al. 2010

Cuba

Florida

Data — catch, effort, size of monthly landings

Data — catch, effort

Assessment —

Sequential population analysis to estimate F

Assessment —Surplus Production Model

CR/ RPs — F_{14.3%} (replacement SPR)

CR/ RP — OFL at F_{20%} SPR, MSY

Regulations — limited entry, TURFs, gear restrictions, closed seasons/ areas, MLS, no-take of eggbearing females

Regulations — gear restrictions, closed seasons, MLS, no-take of egg-bearing females

Cuba

Florida

Data—catch, effort, size and sex distribution monthly.

Monitor reproductive stage during closed season

Assessment—Biomass dynamic, Leslie-Delury, length based VPA, Thompson and Bell, bioeconomic

Control Rule/ Reference Points—

using B/Bmsy since 2000. Effort regulated within cooperatives

Regulations—TURFS, closed season, MLS, no take of egg-bearing females

Chavez and Gorostieta 2010

Gulf of Maine

- 76 percentof USlandings
- <5%recreationalcatch

Data — catch, effort, length frequencies, FI trawl survey, settlement, ventless traps

Assessment —Statistical Catch-at-length model

Control Rule/ Reference Points — Abundance and Fishing Mortality thresholds

Regulations — Total allowable effort, slot limit, no take of breeding females

Conclusions

CPUE is highly informative

Size structure can provide an SPR-based reference point

Need for redundancy in controls-Combining Bbiological controls with catch or effort

Control rules that adjust effort/ catch in relation to targets can prevent drastic management actions later

Thank You

Questions?